Lessons Learned from Building a Large-Scale Recommendation System at Headspace

Rohan Singh Rajput Senior Data Scientist Headspace

headspace health.

Agenda

- Introduction
- History
- Models
- Current State
- Challenges
- Opportunities

Headspace is an online meditation and mindfulness company

headspace health.

11:26	sos 🦛
Q Search Headspace	
relax sleep	morning w
Meditate	Sleep
Move	Music
Guided Program Managing Stress 쉰 Beginner level	
➡ 4 weeks · 10 mins a day ▲ Led by Kessonga	
온 Led by Kessonga	

History

- Launched in 2021, the content customizer started to countering the declining retention rate.
- Every headspace user was getting the same editorial content that used to refresh everyday.
- Headspace had over 1000+ unique content and more than 2 million B2C subscribers

5

Hypothesis

Personalized recommendations will help members find more relevant content, thereby increasing their engagement with Headspace

- Content Customizer (a.k.a CC) is our recommendation system that serves personalized recommendations
- It uses historical user-item interaction data to generate recommendation everyday

Components of Modeling

• Data

- B2C and B2B Subscribers
- Feature Store
 - User tenure, demographics, language, time of the day etc.
 - Item type, playtime duration, content creation date etc.
- \circ $\,$ IOS and Android
- Evaluation
 - **Offline:** NDGC@K, HITRate@K, Precision@K, etc.
 - **Online:** A/B Testing

• Inference and Post processing

- Nightly batched training
- Payload to prediction service
- Fix sequence, remove popular and recently completed

Modeling Pipeline

- Deployed for both B2C and B2B members
- Deployed to both iOS and Android platform

LightFM Model

• Reasons

- Matrix Factorization
- Implicit and Explicit Feedback
- GPU Optimization
- Highly scalable

• Result

- **Offline:** Precision@k and Recall@k
- **Online:** No statistically significant lift (content start/complete) in A/B test

	M1	M2	M3 \	M4	M5
Comedy	3	1	1	3	1
Action	1	2	4	1	3
				1	
	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
	4	3	5	4	4

Image Credit: Google Developer

Kula, Maciej. "Metadata embeddings for user and item cold-start recommendations." arXiv preprint arXiv:1507.08439 (2015)

Neural Collaborative Filtering Model

•	Reasons	
	 Non-linearity 	
	 User-item features 	Output Layer
	 Sparsity 	•
•	Result	Neural CF Layers
	 Offline: Precision@k and Recall@k 	Neural er Layers
	 Online: Over 2% statistically significant lift (content 	
	start/complete) in A/B test	
		Embedding Layer
		Input Layer (Spars

He, Xiangnan, et al. "Neural collaborative filtering." Proceedings of the 26th international conference on world wide web. 2017.

Time Interval Aware Self-Attention for Sequential Recommendation (TiSASRec)

- Reasons
 - Sequential Data Ο
 - Temporal Dynamics Ο
 - **Transformer Architecture** Ο

Result

- **Offline:** NDCG@k and HitRate@k \bigcirc
- **Online:** Over **4.68%** statistically significant lift \bigcirc (content play) in A/B test

Li, Jiacheng, Yujie Wang, and Julian McAuley. "Time interval aware self-attention for sequential recommendation." Proceedings of the 13th international conference on web search and data mining. 2020.

System Architecture

Semantic Sampling

Experimented Models

Version Name Outcome

<u>RL</u> Batch-Constrained Q-learning algorithm to a discrete-action setting

Model didn't win in the experiment

Transformer4Rec implement with **NVIDIA** team

Didn't beat the existing model Used user-item features

Onboarding Question Cold start model

Dropped the engagement Utilized onboarding question with static NLP embedding

headspace health**.**

Challenges

• Feature Space

- User features are not rich enough to understand the user behavior
 - Subscription mismatch
 - Sparse interaction
 - Privacy and Compliance
- Item features are fragmented
 - Many features are stored in multiple system
 - Overlapping content type

• UI Rigidity

- Fluid design for multiple screens
- High performing static content
- Single model everywhere
- Explicit Feedback

High Performing Content

Static Content

Opportunities

Client Reform

- The new shelves based design helps to surface context based recommendations
- Provide separate screen to present notified recommendations
- Search based recommendations

• Modeling

- **Long term value (**Align with the product's vision)
- Multi-modal recommendation (text, image, audio)
- Personalized shelves ranking
- Causal AI to get explainability
- Optimize novelty, diversity and relevance

Opportunities

Robust E2E System

- Impression data
- Analyze data drift, model drift and concept drift
- Smart caching
- Real time inference with continuous learning
- Interconnected recommendation (email, push, notification)

Thank you

https://www.linkedin.com/in/rohan3/

headspace health•

