
https://iaeme.com/Home/journal/IJCET 140 editor@iaeme.com

International Journal of Computer Engineering and Technology (IJCET)
Volume 14, Issue 3, Sep-Dec 2023, pp. 140-148, Article ID: IJCET_14_03_014

Available online at https://iaeme.com/Home/issue/IJCET?Volume=14&Issue=3

ISSN Print: 0976-6367 and ISSN Online: 0976–6375

© IAEME Publication

OPTIMIZING AWS LAMBDA COLD STARTS

THROUGH PRIMING: A TECHNICAL

EXPLORATION

Balasubrahmanya Balakrishna

USA

ABSTRACT

This technical paper explores how Priming can be a deliberate tool to reduce cold

start[1] time in AWS Lambda serverless services. Cold starts, indicating initial delays

when executing a function after inactivity, often pose challenges in serverless systems.

Using a heavy-weight dependency injection design or framework in Java systems

exacerbates this difficulty. The article analyzes situations where desired response times

are not attained, uncovering optimization insights even when devising concurrency

models such as provisioned concurrency and Snapstart, which aim to reduce cold starts,

are adopted. This article investigates the adoption of priming methods to decrease cold

start times, thereby improving the overall performance of serverless apps.

The author, coming from an AWS and Java background, is committed to using these

technologies to express the concept throughout.

Keywords: AWS Serverless Lambda, Provisioned Concurrency, SnapStart,

Cloudwatch, Spring Boot, JVM, AWS Fargate, AWS EC2, AWS ECS, HTTP Client,

AWS DynamoDB

Cite this Article: Balasubrahmanya Balakrishna, Optimizing Aws Lambda Cold Starts

Through Priming: A Technical Exploration, International Journal of Computer

Engineering and Technology (IJCET), 14(3), 2023, 140-148.

https://iaeme.com/Home/issue/IJCET?Volume=14&Issue=3

INTRODUCTION

Understanding and minimizing cold start delays is becoming increasingly important as

enterprises rely on serverless computing for mission-critical applications. This article provides

developers, architects, and system administrators with the information and tools they need to

deploy priming approaches intelligently, ultimately increasing AWS Lambda performance and

enhancing the user experience for serverless apps. Readers will get significant insights into the

subtleties of Priming and its disruptive potential in serverless computing due to this technical

exploration.

Balasubrahmanya Balakrishna

https://iaeme.com/Home/journal/IJCET 141 editor@iaeme.com

"Priming" refers to putting data or initializing resources into memory before their initial use.

This proactive strategy reduces execution delays by ensuring that the assets required when a

function is activated are readily available. While this strategy applies to many applications, its

benefits are especially noticeable in the serverless Lambda space, where AWS periodically

reinitializes Lambda.

Consider cases where an AWS Lambda function uses external resources, such as database

connections or HTTP clients. In database connection, Priming could entail creating and caching

the connection during an "INIT" phase[1] for a Lambda function that interacts with a database.

When the Lambda function is later invoked ("Warm Start")[1], the database connection is already

in memory, minimizing the time required to create the connection on the fly. Priming is

especially useful in cases where low-latency database interactions are critical. Similarly,

Consider a Lambda function that makes HTTP queries to external APIs or services. Priming

would entail initializing and storing the HTTP client connection and any necessary

authentication tokens or variables. When a Lambda function is invoked warmly, the HTTP

client connection is already in memory, saving time that might otherwise be spent setting up

the connection dynamically. Priming is helpful for applications that require immediate and

responsive contact with external services.

A. Lambda with Provisioned Concurrency

Consider the following diagram (Fig.1), which depicts a Lambda running a Java application

with Provisioned Concurrency. This diagram illustrates the basic activities of a

Lambda function utilizing Provisioned Concurrency[3]. For simplicity, we've limited the

concurrency to one container by deploying the function with a Provisioned Concurrency value

of 1. With this configuration, the Lambda function avoids cold starts, which occur when initial

requests wait for the container or execution environment[4] to kick off.

Certain classes not being fully initialized may still prolong the initial response times for the

first request despite the lack of cold starts. This behavior is similar to what you could see with

AWS Serverful Compute and other AWS Serverless container-based services like Fargate.

AWS initiates periodic reinitialization of Lambda containers, which occurs every hour based

on observations. This recurrent reinitialization can result in heightened response times for the

first request.

Fig. 1. AWS Lambda with provisioned concurrency and periodic reinitialization

Optimizing Aws Lambda Cold Starts Through Priming: A Technical Exploration

https://iaeme.com/Home/journal/IJCET 142 editor@iaeme.com

B. Lambda with SnapStart

The same logic applies to a Lambda function that uses SnapStart[2]. The core mechanisms of a

SnapStart-enabled Lambda function are depicted in the diagram (Fig. 2) below. When a

SnapStart-enabled Lambda function faces a cold start, it uses a previously saved snapshot of

the function to reduce the cold start time drastically. However, if the snapshotted Lambda

function does not have the necessary data in its memory, an additional penalty may be imposed,

resulting in increased latency for the original request.

Fig. 2. AWS Lambda with SnapStart and periodic reinitialization

PRIMING APPROACHES

We may address the above issue: one requires specifically priming a particular AWS resource.

At the same time, the other involves a broader technique of priming any resource. Let us

systematically examine both options outlined below:

A. Priming an AWS Resource

Consider a scenario in which SnapStart-enabled Lambda functions display prolonged cold start

times primarily due to DynamoDB configuration. We can strategically initialize the

DynamoDB client during the SnapStart snapshot creation process to remedy this. Priming is

accomplished by including a "static" block within the handler class. The following section (Fig.

3) presents a systematic strategy for implementing client priming in this specific context:

Balasubrahmanya Balakrishna

https://iaeme.com/Home/journal/IJCET 143 editor@iaeme.com

Optimizing Aws Lambda Cold Starts Through Priming: A Technical Exploration

https://iaeme.com/Home/journal/IJCET 144 editor@iaeme.com

We force the DynamoDB setup before snapshot creation by including a dummy DynamoDB

request within the static block. As a result, the snapshots will consist of this pre-executed

initialization by default. With this configuration, a series of tests were run by switching the

ENABLE_PRIMING flag between false (depicted in Fig. 4) and true (depicted in Fig. 5) for

1000 repetitions, obtaining the following owing results: The test results show a considerable

improvement in response time, with the median lowering from 1903 ms to 195 ms, equating to

an improvement of ≅ 90%.

Balasubrahmanya Balakrishna

https://iaeme.com/Home/journal/IJCET 145 editor@iaeme.com

Fig.4 Test result: Priming disabled on AWS Resource

Fig.5 Test result: Priming enabled on AWS Resource

The test results show a considerable improvement in response time, with the median

lowering from 1903 ms to 195 ms, equating to an improvement of ≅ 90%.

B. Priming any Resource

Even when the use case does not need a connection with AWS resources such as DynamoDB,

an increased delay can be observed for the initial request. When deploying a Spring Boot

Lambda function with Provisioned Concurrency, response times may increase noticeably due

to the reinitialization of Lambda Provisioned Concurrency instances.

In such cases, sending a dummy request to the Lambda function during the "INIT" phase

helps reduce latency. The following code snippet (depicted in Fig. 6) presents a systematic

strategy for implementing client priming in this context.

Optimizing Aws Lambda Cold Starts Through Priming: A Technical Exploration

https://iaeme.com/Home/journal/IJCET 146 editor@iaeme.com

Balasubrahmanya Balakrishna

https://iaeme.com/Home/journal/IJCET 147 editor@iaeme.com

The outcomes of this test (depicted in Fig. 7) demonstrate a significant enhancement in

response time, decreasing from 6000 ms to 60 ms, which translates to a tenfold improvement.

RATIONALE

In contemplating this approach, one might question the apparent unconventional nature of

making dummy requests to AWS resources or the application itself. Acknowledged as a

somewhat uncommon practice, initializing specific resources sometimes necessitates sending a

dummy request. While this method lacks elegance, its effectiveness makes it a valid

consideration, introducing a trade-off that demands evaluation when assessing the solution.

CONSIDERATIONS

Caution is paramount when employing Priming due to potential side effects. When interacting

with AWS resources, unintended modifications to the downstream state may occur, posing

challenges for the application. For instance, initializing DynamoDB by inserting a fake item

may incur additional costs and introduce data into the table that could disrupt normal app

execution. It is crucial to ensure that modified data does not cause issues or turn off the Priming

portion if opting for the general Priming solution (where the app calls itself).

CONCLUSION

Despite these considerations, Priming is a powerful method for reducing first-request latency.

Priming, combined with SnapStart or Provisioned Concurrency, advocates addressing the core

pain point of Cold Starts from a code-centric perspective rather than the execution environment.

Evaluating first-request response times becomes critical; Priming may be helpful if they are

higher than typical and dealing with high TPS and low latent applications. Also, priming can

lower the cost as it reduces the execution time of a function.

REFERENCES

[1] AWS (n.d.). Lambda execution environments. AWS Lambda Documentation.

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-enviro nments.html

[2] AWS (n.d.). Reducing java cold starts on aws lambda functions with snapstart. AWS

Lambda Documentation.

https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-la mbda-

functions-with-snapstart/

[3] AWS (n.d.). Configuring Provisioned Concurrency. AWS Lambda Documentation.

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.ht ml

[4] AWS (n.d.). Lambda execution environment. AWS Lambda Documentation.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environmen t.html

[5] AWS (n.d.). Concurrency. AWS Lambda Documentation.

https://docs.aws.amazon.com/lambda/latest/dg/API_Concurrency.html

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-la
https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-lambda-functions-with-snapstart/
https://aws.amazon.com/blogs/compute/reducing-java-cold-starts-on-aws-lambda-functions-with-snapstart/
https://docs.aws.amazon.com/lambda/latest/dg/API_Concurrency.html

Optimizing Aws Lambda Cold Starts Through Priming: A Technical Exploration

https://iaeme.com/Home/journal/IJCET 148 editor@iaeme.com

[6] AWS (n.d.). Operating Lambda: Performance optimization – Part 1.

AWS Lambda Documentation.

https://aws.amazon.com/blogs/compute/operating-lambda-performance-opti mization-part-

1/

[7] AWS (n.d.). Operating Lambda: Performance optimization – Part 2.

AWS Lambda Documentation.

https://aws.amazon.com/blogs/compute/operating-lambda-performance-opti mization-part-

2/

AUTHOR INFORMATION

Balasubrahmanya Balakrishna is a Senior Lead Software Engineer, serverless-focused

strategy leader, open-source enthusiast, and cloud-native advocate.

Citation: Balasubrahmanya Balakrishna, Optimizing Aws Lambda Cold Starts Through Priming: A Technical

Exploration, International Journal of Computer Engineering and Technology (IJCET), 14(3), 2023, 140-148.

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_14_ISSUE_3/IJCET_14_03_014.pdf

Abstract Link:

https://iaeme.com/Home/article_id/IJCET_14_03_014

Copyright: © 2023 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com

https://aws.amazon.com/blogs/compute/operating-lambda-performance-opti
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
mailto:editor@iaeme.com

